翻译|使用教程|编辑:胡涛|2022-05-16 15:27:59.647|阅读 178 次
概述:我们将介绍如何动态提取段落、表格等特定元素之间的内容。
# 慧都年终大促·界面/图表报表/文档/IDE等千款热门软控件火热促销中 >>
相关链接:
从 Word 文档中提取文本通常在不同的场景中执行。例如,分析文本,提取文档的特定部分并将它们组合成单个文档,等等。在本文中,您将学习如何在 Python 中以编程方式从 Word 文档中提取文本。此外,我们将介绍如何动态提取段落、表格等特定元素之间的内容。
Aspose.Words for . Python 最新下载
信息:如果您需要从 PowerPoint 演示文稿中获取 Word 文档,您可以使用 Aspose演示文稿到 Word 文档转换器。
Aspose.Words for Python是一个强大的库,可让您从头开始创建 MS Word 文档。此外,它可以让您操作现有的 Word 文档进行加密、转换、文本提取等。我们将使用这个库从 Word DOCX 或 DOC 文档中提取文本。您可以使用以下 pip 命令从PyPI安装库。
pip install aspose-words
MS Word 文档由各种元素组成,包括段落、表格、图像等。因此,文本提取的要求可能因一种情况而异。例如,您可能需要在段落、书签、评论等之间提取文本。
Word 文档中的每种类型的元素都表示为一个节点。因此,要处理文档,您将不得不使用节点。那么让我们开始看看如何在不同的场景下从 Word 文档中提取文本。
在本节中,我们将为 Word 文档实现一个 Python 文本提取器,文本提取的工作流程如下:
现在让我们编写一个名为extract_content的方法,我们将向该方法传递节点和一些其他参数来执行文本提取。此方法将解析文档并克隆节点。以下是我们将传递给此方法的参数。
以下是extract_content方法的完整实现,该方法提取传递的节点之间的内容。
def extract_content(startNode : aw.Node, endNode : aw.Node, isInclusive : bool): # First, check that the nodes passed to this method are valid for use. verify_parameter_nodes(startNode, endNode) # Create a list to store the extracted nodes. nodes = [] # If either marker is part of a comment, including the comment itself, we need to move the pointer # forward to the Comment Node found after the CommentRangeEnd node. if (endNode.node_type == aw.NodeType.COMMENT_RANGE_END and isInclusive) : node = find_next_node(aw.NodeType.COMMENT, endNode.next_sibling) if (node != None) : endNode = node # Keep a record of the original nodes passed to this method to split marker nodes if needed. originalStartNode = startNode originalEndNode = endNode # Extract content based on block-level nodes (paragraphs and tables). Traverse through parent nodes to find them. # We will split the first and last nodes' content, depending if the marker nodes are inline. startNode = get_ancestor_in_body(startNode) endNode = get_ancestor_in_body(endNode) isExtracting = True isStartingNode = True # The current node we are extracting from the document. currNode = startNode # Begin extracting content. Process all block-level nodes and specifically split the first # and last nodes when needed, so paragraph formatting is retained. # Method is a little more complicated than a regular extractor as we need to factor # in extracting using inline nodes, fields, bookmarks, etc. to make it useful. while (isExtracting) : # Clone the current node and its children to obtain a copy. cloneNode = currNode.clone(True) isEndingNode = currNode == endNode if (isStartingNode or isEndingNode) : # We need to process each marker separately, so pass it off to a separate method instead. # End should be processed at first to keep node indexes. if (isEndingNode) : # !isStartingNode: don't add the node twice if the markers are the same node. process_marker(cloneNode, nodes, originalEndNode, currNode, isInclusive, False, not isStartingNode, False) isExtracting = False # Conditional needs to be separate as the block level start and end markers, maybe the same node. if (isStartingNode) : process_marker(cloneNode, nodes, originalStartNode, currNode, isInclusive, True, True, False) isStartingNode = False else : # Node is not a start or end marker, simply add the copy to the list. nodes.append(cloneNode) # Move to the next node and extract it. If the next node is None, # the rest of the content is found in a different section. if (currNode.next_sibling == None and isExtracting) : # Move to the next section. nextSection = currNode.get_ancestor(aw.NodeType.SECTION).next_sibling.as_section() currNode = nextSection.body.first_child else : # Move to the next node in the body. currNode = currNode.next_sibling # For compatibility with mode with inline bookmarks, add the next paragraph (empty). if (isInclusive and originalEndNode == endNode and not originalEndNode.is_composite) : include_next_paragraph(endNode, nodes) # Return the nodes between the node markers. return nodes
extract_content方法还需要一些辅助方法来完成文本提取操作,如下所示。
def verify_parameter_nodes(start_node: aw.Node, end_node: aw.Node): # The order in which these checks are done is important. if start_node is None: raise ValueError("Start node cannot be None") if end_node is None: raise ValueError("End node cannot be None") if start_node.document != end_node.document: raise ValueError("Start node and end node must belong to the same document") if start_node.get_ancestor(aw.NodeType.BODY) is None or end_node.get_ancestor(aw.NodeType.BODY) is None: raise ValueError("Start node and end node must be a child or descendant of a body") # Check the end node is after the start node in the DOM tree. # First, check if they are in different sections, then if they're not, # check their position in the body of the same section. start_section = start_node.get_ancestor(aw.NodeType.SECTION).as_section() end_section = end_node.get_ancestor(aw.NodeType.SECTION).as_section() start_index = start_section.parent_node.index_of(start_section) end_index = end_section.parent_node.index_of(end_section) if start_index == end_index: if (start_section.body.index_of(get_ancestor_in_body(start_node)) > end_section.body.index_of(get_ancestor_in_body(end_node))): raise ValueError("The end node must be after the start node in the body") elif start_index > end_index: raise ValueError("The section of end node must be after the section start node") def find_next_node(node_type: aw.NodeType, from_node: aw.Node): if from_node is None or from_node.node_type == node_type: return from_node if from_node.is_composite: node = find_next_node(node_type, from_node.as_composite_node().first_child) if node is not None: return node return find_next_node(node_type, from_node.next_sibling) def is_inline(node: aw.Node): # Test if the node is a descendant of a Paragraph or Table node and is not a paragraph # or a table a paragraph inside a comment class that is decent of a paragraph is possible. return ((node.get_ancestor(aw.NodeType.PARAGRAPH) is not None or node.get_ancestor(aw.NodeType.TABLE) is not None) and not (node.node_type == aw.NodeType.PARAGRAPH or node.node_type == aw.NodeType.TABLE)) def process_marker(clone_node: aw.Node, nodes, node: aw.Node, block_level_ancestor: aw.Node, is_inclusive: bool, is_start_marker: bool, can_add: bool, force_add: bool): # If we are dealing with a block-level node, see if it should be included and add it to the list. if node == block_level_ancestor: if can_add and is_inclusive: nodes.append(clone_node) return # cloneNode is a clone of blockLevelNode. If node != blockLevelNode, blockLevelAncestor # is the node's ancestor that means it is a composite node. assert clone_node.is_composite # If a marker is a FieldStart node check if it's to be included or not. # We assume for simplicity that the FieldStart and FieldEnd appear in the same paragraph. if node.node_type == aw.NodeType.FIELD_START: # If the marker is a start node and is not included, skip to the end of the field. # If the marker is an end node and is to be included, then move to the end field so the field will not be removed. if is_start_marker and not is_inclusive or not is_start_marker and is_inclusive: while node.next_sibling is not None and node.node_type != aw.NodeType.FIELD_END: node = node.next_sibling # Support a case if the marker node is on the third level of the document body or lower. node_branch = fill_self_and_parents(node, block_level_ancestor) # Process the corresponding node in our cloned node by index. current_clone_node = clone_node for i in range(len(node_branch) - 1, -1): current_node = node_branch[i] node_index = current_node.parent_node.index_of(current_node) current_clone_node = current_clone_node.as_composite_node.child_nodes[node_index] remove_nodes_outside_of_range(current_clone_node, is_inclusive or (i > 0), is_start_marker) # After processing, the composite node may become empty if it has doesn't include it. if can_add and (force_add or clone_node.as_composite_node().has_child_nodes): nodes.append(clone_node) def remove_nodes_outside_of_range(marker_node: aw.Node, is_inclusive: bool, is_start_marker: bool): is_processing = True is_removing = is_start_marker next_node = marker_node.parent_node.first_child while is_processing and next_node is not None: current_node = next_node is_skip = False if current_node == marker_node: if is_start_marker: is_processing = False if is_inclusive: is_removing = False else: is_removing = True if is_inclusive: is_skip = True next_node = next_node.next_sibling if is_removing and not is_skip: current_node.remove() def fill_self_and_parents(node: aw.Node, till_node: aw.Node): nodes = [] current_node = node while current_node != till_node: nodes.append(current_node) current_node = current_node.parent_node return nodes def include_next_paragraph(node: aw.Node, nodes): paragraph = find_next_node(aw.NodeType.PARAGRAPH, node.next_sibling).as_paragraph() if paragraph is not None: # Move to the first child to include paragraphs without content. marker_node = paragraph.first_child if paragraph.has_child_nodes else paragraph root_node = get_ancestor_in_body(paragraph) process_marker(root_node.clone(True), nodes, marker_node, root_node, marker_node == paragraph, False, True, True) def get_ancestor_in_body(start_node: aw.Node): while start_node.parent_node.node_type != aw.NodeType.BODY: start_node = start_node.parent_node return start_node def generate_document(src_doc: aw.Document, nodes): dst_doc = aw.Document() # Remove the first paragraph from the empty document. dst_doc.first_section.body.remove_all_children() # Import each node from the list into the new document. Keep the original formatting of the node. importer = aw.NodeImporter(src_doc, dst_doc, aw.ImportFormatMode.KEEP_SOURCE_FORMATTING) for node in nodes: import_node = importer.import_node(node, True) dst_doc.first_section.body.append_child(import_node) return dst_doc def paragraphs_by_style_name(doc: aw.Document, style_name: str): paragraphs_with_style = [] paragraphs = doc.get_child_nodes(aw.NodeType.PARAGRAPH, True) for paragraph in paragraphs: paragraph = paragraph.as_paragraph() if paragraph.paragraph_format.style.name == style_name: paragraphs_with_style.append(paragraph) return paragraphs_with_style
现在我们准备好使用这些方法并从 Word 文档中提取文本。
让我们看看如何在 Word DOCX 文档的两个段落之间提取内容。以下是在 Python 中执行此操作的步骤。
以下代码示例展示了如何在 Python 中提取 Word 文档中第 7 段和第 11 段之间的文本。
# Load document. doc = aw.Document("Extract content.docx") # Define starting and ending paragraphs. startPara = doc.first_section.body.get_child(aw.NodeType.PARAGRAPH, 6, True).as_paragraph() endPara = doc.first_section.body.get_child(aw.NodeType.PARAGRAPH, 10, True).as_paragraph() # Extract the content between these paragraphs in the document. Include these markers in the extraction. extractedNodes = extract_content(startPara, endPara, True) # Generate document containing extracted content. dstDoc = generate_document(doc, extractedNodes) # Save document. dstDoc.save("extract_content_between_paragraphs.docx")
您还可以在不同类型的节点之间提取内容。为了演示,让我们提取段落和表格之间的内容并将其保存到新的 Word 文档中。以下是执行此操作的步骤。
以下代码示例展示了如何在 Python 中提取段落和表格之间的文本。
# Load document doc = aw.Document("Extract content.docx") # Define starting and ending nodes. start_para = doc.last_section.get_child(aw.NodeType.PARAGRAPH, 2, True).as_paragraph() end_table = doc.last_section.get_child(aw.NodeType.TABLE, 0, True).as_table() # Extract the content between these nodes in the document. Include these markers in the extraction. extracted_nodes = extract_content(start_para, end_table, True) # Generate document containing extracted content. dstDoc = generate_document(doc, extractedNodes) # Save document. dstDoc.save("extract_content_between_nodes.docx")
现在让我们看看如何根据样式提取段落之间的内容。为了演示,我们将提取 Word 文档中第一个“标题 1”和第一个“标题 3”之间的内容。以下步骤演示了如何在 Python 中实现此目的。
以下代码示例展示了如何根据样式提取段落之间的内容。
# Load document doc = aw.Document("Extract content.docx") # Gather a list of the paragraphs using the respective heading styles. parasStyleHeading1 = paragraphs_by_style_name(doc, "Heading 1") parasStyleHeading3 = paragraphs_by_style_name(doc, "Heading 3") # Use the first instance of the paragraphs with those styles. startPara1 = parasStyleHeading1[0] endPara1 = parasStyleHeading3[0] # Extract the content between these nodes in the document. Don't include these markers in the extraction. extractedNodes = extract_content(startPara1, endPara1, False) # Generate document containing extracted content. dstDoc = generate_document(doc, extractedNodes) # Save document. dstDoc.save("extract_content_between_paragraphs_based_on-Styles.docx")
在本文中,您学习了如何使用 Python 从 MS Word 文档中提取文本。此外,您还了解了如何以编程方式在 Word 文档中相似或不同类型的节点之间提取内容。因此,您可以在 Python 中构建自己的 MS Word 文本提取器。此外,您可以使用文档探索 Aspose.Words for Python 的其他功能 。如果您有任何问题,请随时告诉我们。
欢迎下载|体验更多Aspose产品
本站文章除注明转载外,均为本站原创或翻译。欢迎任何形式的转载,但请务必注明出处、不得修改原文相关链接,如果存在内容上的异议请邮件反馈至chenjj@cahobeh.cn