彩票走势图

大数据中主要的5种数据挖掘技术

转帖|大数据新闻|编辑:况鱼杰|2020-11-13 10:42:49.110|阅读 222 次

概述:数据挖掘涉及“处理数据和识别信息中的模式和趋势”,根据IBM所说,“数据挖掘原理已经存在了许多年,但是随着大数据的出现,它更为流行了。”数据挖掘技术帮助专业人员了解可用数据集,本文将会介绍5种主要的数据挖掘技术,这些技术可以为企业和其他组织提供描述性和预测性的能力。

# 慧都年终大促·界面/图表报表/文档/IDE等千款热门软控件火热促销中 >>

相关链接:

数据挖掘涉及“处理数据和识别信息中的模式和趋势”,根据IBM所说,“数据挖掘原理已经存在了许多年,但是随着大数据的出现,它更为流行了。”数据挖掘技术帮助专业人员了解可用数据集,本文将会介绍5种主要的数据挖掘技术,这些技术可以为企业和其他组织提供描述性和预测性的能力。


关联规则

关联规则使两个或多个项之间的关联以确定它们之间的模式。例如,超市可以确定顾客在买草莓时也常买鲜奶油,反之亦然。关联通常用于销售点系统,以确定产品之间的共同趋势。

应用领域包括物品的实物摆放组织、市场营销和产品的交叉销售和上销。

分类

我们可以使用多个属性来标记特定类别的项。分类将项目分配到目标类别或类中,以便准确地预测该类内部会发生什么。

某些行业会将客户进行分类。例如,一家信贷公司可以使用分类模型来确定贷款申请人的低、中或高信用风险。其他组织将当前和目标受众分为不同年龄和社会团体进行营销活动。

聚类

聚类是将数据记录组合在一起的方法,通常这样做是为了让最终用户对数据库中发生的事情有一个高层次的认识。

查看对象分组情况可以帮助市场细分领域的企业。在这个例子中可以使用聚类将市场细分为客户子集。然后,每个子集可以根据簇的属性来制定特定的营销策略,例如在一个簇中与另一个簇中的客户的购买模式的对比。

决策树

决策树用于分类或预测数据。决策树从一个简单的问题开始,它有两个或多个的答案。每个答案将会引出进一步的问题,该问题又可被用于分类或识别可被进一步分类的数据,或者可以基于每个答案进行预测。

将数据分成多个叶结点,所有叶结点的数据记录数的加和等于输入数据的记录总数。例如,父结点中的数据记录总数等于其两个子结点中包含的记录总和。

如果你需要针对可能流失的客户提供一份市场营销方案,则该模型非常易于使用。

序列模式

序列模式识别相似事件的趋势或通常情况发生的可能。这种数据挖掘技术经常被用来助于理解用户购买行为。许多零售商通过数据和序列模式来决定他们用于展示的产品。



关于慧都大数据分析平台

慧都大数据分析平台「GetInsight®」升级发布,将基于企业管理驾驶舱产品质量分析及预测设备分析及预测等大数据模型的构建,助力企业由传统运营模式向数字化、智能化的新模式转型升级,抓住数据经济的发展势头,提供管理效能,精准布局未来。了解更多,请联系。

慧都大数据专业团队为企业提供商业智能大数据平台搭建,免费业务咨询,定制开发等完整服务,快速、轻松、低成本将任何Hadoop集群从试用阶段转移到生产阶段。

欢迎拨打慧都热线023-68661681或咨询慧都在线客服,我们有专业的大数据团队,为您提供免费大数据相关业务咨询!



标签:大数据数据挖掘

本站文章除注明转载外,均为本站原创或翻译。欢迎任何形式的转载,但请务必注明出处、不得修改原文相关链接,如果存在内容上的异议请邮件反馈至chenjj@cahobeh.cn

文章转载自:

为你推荐

  • 推荐视频
  • 推荐活动
  • 推荐产品
  • 推荐文章
  • 慧都慧问
扫码咨询


添加微信 立即咨询

电话咨询

客服热线
023-68661681

TOP