提供3000多款全球软件/控件产品
针对软件研发的各个阶段提供专业培训与技术咨询
根据客户需求提供定制化的软件开发服务
全球知名设计软件,显著提升设计质量
打造以经营为中心,实现生产过程透明化管理
帮助企业合理产能分配,提高资源利用率
快速打造数字化生产线,实现全流程追溯
生产过程精准追溯,满足企业合规要求
以六西格玛为理论基础,实现产品质量全数字化管理
通过大屏电子看板,实现车间透明化管理
对设备进行全生命周期管理,提高设备综合利用率
实现设备数据的实时采集与监控
利用数字化技术提升油气勘探的效率和成功率
钻井计划优化、实时监控和风险评估
提供业务洞察与决策支持实现数据驱动决策
转帖|使用教程|编辑:我只采一朵|2017-06-22 13:42:45.000|阅读 662 次
概述:最近在学pyTorch的实际应用例子。这次说个简单的例子:给定一句话,判断是什么语言。
# 慧都年终大促·界面/图表报表/文档/IDE等千款热门软控件火热促销中 >>
作者:甄冉冉
最近在学pyTorch的实际应用例子。这次说个简单的例子:给定一句话,判断是什么语言。这个例子是比如给定一句话:
Give it to me 判断是 ENGLISH me gusta comer en la cafeteria 判断是 SPANISH
就是这么简单的例子。
来看怎么实现:
准备数据 格式 [(语句,类型),…]
data是train的时候用的语句,test_data是test的时候用的语句
data = [ ("me gusta comer en la cafeteria".split(), "SPANISH"), ("Give it to me".split(), "ENGLISH"), ("No creo que sea una buena idea".split(), "SPANISH"), ("No it is not a good idea to get lost at sea".split(), "ENGLISH") ] test_data = [("Yo creo que si".split(), "SPANISH"), ("it is lost on me".split(), "ENGLISH")]
因为文本计算机室识别不出来的,他们只认识01串,也就是数字。所以我们得把文本映射到数字上。
word_to_ix = {} for sent, _ in data + test_data: for word in sent: if word not in word_to_ix: word_to_ix[word] = len(word_to_ix) print(word_to_ix)
输出word_to_ix (意思是word to index)是:
{'me': 0, 'gusta': 1, 'comer': 2, 'en': 3, 'la': 4, 'cafeteria': 5, 'Give': 6, 'it': 7, 'to': 8, 'No': 9, 'creo': 10, 'que': 11, 'sea': 12, 'una': 13, 'buena': 14, 'idea': 15, 'is': 16, 'not': 17, 'a': 18, 'good': 19, 'get': 20, 'lost': 21, 'at': 22, 'Yo': 23, 'si': 24, 'on': 25}
这里先提前设置下接下来要用到的参数
VOCAB_SIZE = len(word_to_ix) NUM_LABELS = 2#只有两类 ENGLISH SPANISH
固定模板
def init(self, num_labels, vocab_size):初始化,就是输入和输出的大小。这里我们要输入是一个句子,句子最大就是拥有所有字典的词,这里也就是vocab_size(下面再说怎么将一句话根据字典转换成一个数字序列的),输出就是分类,这里分为2类,即num_labels。这里我们用的是线性分类 ,即nn.Linear()。
def forward(self, bow_vec):bow_vec是一个句子的数字化序列,经过self.linear()得到一个线性结果(也就是预测结果),之后对这个结果进行softmax(这里用log_softmax是因为下面的损失函数用的是NLLLoss() 即负对数似然损失,需要log以下)
class BoWClassifier(nn.Module):#nn.Module 这是继承torch的神经网络模板 def __init__(self, num_labels, vocab_size): super(BoWClassifier, self).__init__() self.linear = nn.Linear(vocab_size, num_labels) def forward(self, bow_vec): return F.log_softmax(self.linear(bow_vec)) def make_bow_vector(sentence, word_to_ix)
大概能看懂什么意思吧。就是把一个句子sentence通过word_to_ix转换成数字化序列.比如 sentence=我 是 一只 小 小 鸟 word_to_id={你:0,我:1,他:2,不:3,是:4,大:5,小:6,猪:7,鸟:8,,} make_bow_vector之后的结果是[0,1,0,0,1,0,2,0,1]。view()就是改变下向量维数。
这里是讲len(word_to_ix)1->1len(word_to_ix)
def make_bow_vector(sentence, word_to_ix): vec = torch.zeros(len(word_to_ix)) for word in sentence: vec[word_to_ix[word]] += 1 return vec.view(1, -1)
这个就不用说了吧 一样。(如果想知道torch.LongTensor啥意思的话。可以看看。Torch中,Tensor主要有ByteTensor(无符号char),CharTensor(有符号),ShortTensor(shorts), IntTensor(ints), LongTensor(longs), FloatTensor(floats), DoubleTensor(doubles),默认存放为double类型,如果需要特别指出,通过torch.setdefaulttensortype()方法进行设定。例如torch.setdefaulttensortype(‘torch.FloatTensor’)。 )
def make_target(label, label_to_ix): return torch.LongTensor([label_to_ix[label]])
这里再介绍下model.parameters()这个函数。他的返回结果是model里的所有参数。这里我们用的是线性函数,所以就是f(x)=Ax+b中的A和b(x即输入的数据),这些参数在之后的反馈和更新参数需要的。
model = BoWClassifier(NUM_LABELS, VOCAB_SIZE) for param in model.parameters(): print("param:", param)
可以看出A是2len(vocab_size),b是21
param: Parameter containing: Columns 0 to 9 0.0786 0.1596 0.1259 0.0054 0.0558 -0.0911 -0.1804 -0.1526 -0.0287 -0.1086 -0.0651 -0.1096 -0.1807 -0.1907 -0.0727 -0.0179 0.1530 -0.0910 0.1943 -0.1148 Columns 10 to 19 0.0452 -0.0786 0.1776 0.0425 0.1194 -0.1330 -0.1877 -0.0412 -0.0269 -0.1572 -0.0361 0.1909 0.1558 0.1309 0.1461 -0.0822 0.1078 -0.1354 -0.1877 0.0184 Columns 20 to 25 0.1818 -0.1401 0.1118 0.1002 0.1438 0.0790 0.1812 -0.1414 -0.1876 0.1569 0.0804 -0.1897 [torch.FloatTensor of size 2x26] param: Parameter containing: 0.1859 0.1245 [torch.FloatTensor of size 2]
我们再看看model的def forward(self, bow_vec):怎么用。这里就想下面的代码一样,直接在mode()填一个参数即可,就调用forward函数。
sample = data[0] bow_vector = make_bow_vector(sample[0], word_to_ix) log_probs = model(autograd.Variable(bow_vector)) print("log_probs", log_probs)
输出是:(就是log_softmax后的值)
log_probs Variable containing: -0.6160 -0.7768 [torch.FloatTensor of size 1x2]
我们这里看看在test上的预测
label_to_ix = { "SPANISH": 0, "ENGLISH": 1 } for instance, label in test_data: bow_vec = autograd.Variable(make_bow_vector(instance, word_to_ix)) log_probs = model(bow_vec) print log_probs print next(model.parameters())[:,word_to_ix["creo"]]
结果是
Variable containing: -0.5431 -0.8698 [torch.FloatTensor of size 1x2] Variable containing: -0.7405 -0.6480 [torch.FloatTensor of size 1x2] Variable containing: -0.0467 0.1065 [torch.FloatTensor of size 2]
下面就该进行重要的部分了。
循环训练和更新参数
这里我们用的损失函数是nn.NLLLoss()负对数似然损失,优化依然用的最常见的optim.SGD() 梯度下降法,一般训练5-30次最终优化基本不再变化。
每一步过程:
a. 首先都要model.zero_grad(),因为接下来要极端梯度,得清零,以防问题
b. 将数据向量化(也可以说是数字序列化,转成计算机能看懂的形式)
c. 得到预测值
d. 求损失loss_function
e. 求梯度loss.backward()
f. 更新参数optimizer.step()
loss_function = nn.NLLLoss() optimizer = optim.SGD(model.parameters(), lr=0.1) for epoch in range(100): for instance, label in data: model.zero_grad() bow_vec = autograd.Variable(make_bow_vector(instance, word_to_ix)) target = autograd.Variable(make_target(label, label_to_ix)) log_probs = model(bow_vec) loss = loss_function(log_probs, target) loss.backward() optimizer.step()
在测试集上测试
for instance, label in test_data: bow_vec = autograd.Variable(make_bow_vector(instance, word_to_ix)) log_probs = model(bow_vec) print log_probs
我们在结果上很容易看到第一个例子预测是SPANISH最大,第二个是ENGLISH最大。成功了。
Variable containing: -0.0842 -2.5161 [torch.FloatTensor of size 1x2] Variable containing: -2.4886 -0.0867 [torch.FloatTensor of size 1x2]
本文转载自:36大数据
本站文章除注明转载外,均为本站原创或翻译。欢迎任何形式的转载,但请务必注明出处、不得修改原文相关链接,如果存在内容上的异议请邮件反馈至chenjj@cahobeh.cn
本文探讨 SQL Server 中 NULL 和空值之间的区别,并讨论如何有效地处理它们。
Unity 是一款功能极其丰富的游戏引擎,允许开发人员将各种媒体集成到他们的项目中。但是,它缺少最令人兴奋的功能之一 - 将 Web 内容(例如 HTML、CSS 和 JavaScript)直接渲染到 3D 场景中的纹理上的能力。在本文中,我们将介绍如何使用 DotNetBrowser 在 Unity3D 中将 Web 内容渲染为纹理。
DevExpress v24.2帮助文档正式发布上线了,请按版本按需下载~
本教程将向您展示如何用MyEclipse构建一个Web项目,欢迎下载最新版IDE体验!
服务电话
重庆/ 023-68661681
华东/ 13452821722
华南/ 18100878085
华北/ 17347785263
客户支持
技术支持咨询服务
服务热线:400-700-1020
邮箱:sales@cahobeh.cn
关注我们
地址 : 重庆市九龙坡区火炬大道69号6幢